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t Department of Chemistry B014, University of California, San Diego, La Jolla, California 
92093, USA 
5 Physics and Chemistry Departments BG-IO, University of Washington, Seattle, 
Washington 98195, USA 

Received 10 October 1985 

Abstract. Exact eigenfunctions for a particle in a box are obtained using Gaussian 
wavepacket dynamics. The eigenfunctions are obtained by propagating, without approxi- 
mation, an infinite set of Gaussian wavepackets that collectively satisfy the boundary 
conditions of the problem, being coherent states appropriate to this problem. The method 
of images is applied to enforce these boundary conditions. This technique may be applied 
to the quantum billiard problem whenever the particle is confined to any open or closed 
region that tessellates space, regardless of the dimension of the region. Also, it is shown 
that the use of frozen Gaussians along with the De Leon-Heller spectral quantisation 
method gives the exact solution for the one-dimensional problem as well as for the above 
multi-dimensional problems, provided the components of the momentum of the 
wavepackets are chosen at random. 

1. Introduction 

Only a few quantum mechanical problems are analytically solvable. This small set of 
solvable problems has become a cornerstone of modern physics. Techniques which 
are normally approximate obtain solid foundations by solving some of these problems 
exactly. A computational technique that approximately describes the vibrational evol- 
ution of polyatomic molecules is Gaussian wavepacket dynamics [l] .  Its success is 
directly associated with its ability to solve, without approximation, two important 
problems: the particle in free space, and the molecule in a general harmonic potential. 
Here we show that this technique, when adapted to ensure that the appropriate 
boundary conditions are satisfied, gives exact results for another fundamental problem: 
the particle in a box, also known as the ‘quantum billiard’. This problem is a paradigm 
for a large number of physical and chemical problems [2]. In other papers, we have 
shown that this technique can be adapted to give the exact eigenfunctions [3] and 
rotational spectrum [4] of yet another fundamental problem: the two-dimensional rigid 
rotor. 

In § 2 we consider the one-dimensional case, using the method of images [5] to 
construct a set of wavefunctions which vanish at the box boundaries, and these 
wavefunctions are shown in 0 3 to be coherent states appropriate to this problem. The 
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0 

results are generalised in 9 4 to include particles contained within any open or closed 
sub-region of n-dimensional space, provided the method of images can be used to 
establish the boundary conditions [6,7]. Such a region is said to canonically tessellate 
space by reflection [8,9], and it is the domain of a Coxeter group [ 10-131. In § 5 the 
use of frozen Gaussians and the De Leon-Heller spectral quantisation method [ 141 is 
shown to give exact results for the one-dimensional problem, and 9 6  considers the 
generalisation of this result to multi-dimensional boxes. This provides insight into the 
success of the De Leon-Heller spectral quantisation method at calculating numerical 
eigenfunctions [ 151. 

e o  e o  I 

2. The one-dimensional closed box 

A single Gaussian wavepacket does not vanish at the box boundaries, but an infinite 
sum of such wavepackets can be forced to vanish there. Each wavepacket in such a 
sum has the same width, but the wavepackets all have different centres, and their 
phases may vary in sign. The centres and relative phases are determined by the method 
of images, a technique introduced by Thomson [5] to ensure that the electrostatic 
potential arising from a point charge vanished at every point on a grounded conducting 
surface. It is directly applicable to eigenfunction problems [7]. An example set of 
wavepackets is given in figure 1, where the open and closed circles mark the centres 
of the Gaussian wavepackets and denote their sign. This box has length a and has its 
boundaries at positions q = 0 and q = a. Exactly one wavepacket centre is within the 
box at any given instant, and this wavepacket has images (wavepackets with alternate 
sign) located equidistantly from both box boundaries. These image wavepackets 
themselves have images, found by reflecting about the box boundaries. One of these 
reflections regenerates the original wavepacket, and this is said to be an improper 
image, while the other reflection generates a distinct (proper) image. The generation 
process is repeated ad  injnitum, dividing space into regions which replicate the original 
box, each region containing exactly one wavepacket. No proper images lie in the 
original box, and the wavefunction is periodic with period 2a. 

- 30 -20 -0 0 0 20 30 40 

Figure 1. A possible location for the centre of a Gaussian wavepacket and its images for 
a particle in a one-dimensional box of length a. Bold lines indicate the boundaries of the 
box. The open and closed circles indicate the relative phase of the wavepackets. 

9 

Let l + q , , p , )  be a normalised, coherent state Gaussian wavepacket, which, at time r, 
is centred at position q, and momentum p , .  We can express this wavepacket in the 
position representation as 

or in the momentum representation as 
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where a, and y, are the width and phase of the Gaussian wavepacket, respectively, 
and Im a ,  > 0. These two representations of I J / q t , p , )  are related by the Fourier transform 

t,b,,,,,(q) = ( 2 ~ h ) - ' ' ~  * 4z.Pr ( P 1 

which can also be written as 

The wavefunction depicted in figure 1 is written as 

and is composed of two equally spaced sets of identical wavepackets, each set moving 
in opposite directions. 

As the Hamiltonian operator H is linear, the effect of the propagation 

can be written as 

where, for a particle in a box, 

H = p 2 / ( 2 M )  ( 2 . 8 )  

and M is the mass of the particle. Thus, the time dependence of 19q,,pt) is given by 
the sum of the time dependences of the individual wavepackets, and, as these 
wavepackets behave like a particle in free space, Gaussian wavepacket dynamics [ 11 
propagates these wavepackets without approximation. The widths and phases of each 
individual wavepacket change in unison, while the momenta and relative positions of 
the centres of the two sets of wavepackets do not change at all. Note that no special 
action is required when one of the wavepackets passes through a boundary as an image 
wavepacket simultaneously enters the box, keeping the value of I VI 4 , , p , )  zero at the 
boundary. From the point of view of an observer inside the box, the wavepacket 
appears to be elastically reflected from the box wall. 

The eigenvalues are obtained from the power spectrum 

X 

eiw' d t ( ~ q n , P o ~ Y q r , P , ) .  (2.9) 

This Fourier transform produces a set of S functions with energies E ,  and 'intensities' 
I,, and the corresponding eigenfunctions are given by 

(2.10) 
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where N ,  is a normalising constant. The spatial dependence of these eigenstates, 
x m ( q )  = ( q (  xm), can be obtained by writing the wavepackets in the momentum rep- 
resentation. Using (2.2)-(2.4) and (2.6), (2.10) is written as 

53 

x , ( q ) a l m  - E  eiEmrIfi dr(e-iHr/fi  n=--a: c (~lq,+2na,p,(q) - ( ~ l - q , - Z n a , - p , ( q ) )  

(2.11) 

and the summation can be non-zero only when 

p=m.rrhfa (2.12) 

for integer m, so that the time integral can. be non-zero only when 

E,,, = ( m ~ h ) ~ / 2 M u ’  (2.13) 

and thus the normalised eigenfunctions are 

,ym(q)  = ( 2 / ~ ) ” ~ s i n ( n m q / a ) .  (2.14) 

These eigenfunctions have nodes at the box boundaries q = 0 and q = U,  and (2.12)- 
(2.14) are generally known as the solutions to the problem of a particle in a closed 
one-dimensional box [ 161. 

The wavefunctions generated by a freely moving Gaussian wavepacket are the free 
particle wavefunctions eikq. Because each set of Gaussians comprising I ?Pqt,p,)  is periodic 
with period 2a, the problem is quantised and admits solutions with particular values 
of k only. Finally, as the two sets of Gaussians are travelling in opposite directions, 
the plane waves produced by each set interfere, with the result that the final eigenfunc- 
tions, (2.14), are sine functions. Many of these properties have a counterpart in the 
problem of a two-dimensional rigid rotor [3]. 

Note that the particle in a closed box has energy levels which can be expressed as 
some subset of the integers times a number A, where, in this case, A = .rr2h2(2Ma2)-’. 
As a consequence, all dynamics must be periodic and have the period 2.rrfA = 
4Ma2/(vh) ,  independent of the momentum of the trajectory, p,,. 

This wavepacket technique also gives the exact eigenstates for a particle in both 
fully and partially open boxes. The fully open box is actually a particle in free space, 
and this problem is solved by just a single wavepacket [l], while the half-open box 
requires just one wavepacket and its mirror image. 

3. The wavefunctions Iqqq,,p,) as coherent states 

These wavefunctions share many of the attractive properties possessed by the coherent 
states of harmonic oscillators and of radiation [17], and can be regarded as coherent 
states appropriate to a particle in a box. Let us expand I ?Pqo,po) in terms of the eigenstates 
k m )  as 

m 
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= (-8n;Iy cyo) exp ( - i d  --- ihv2m2) sin . [ - ;m( 9,-- PO)]  I 
a f f o  4a0h 4a2ao 2 f f O  

(3.2) 

This leads to an inner product relationship characteristic of coherent states: 
? a  r m  

2hA 4a2 

= Smn (3.3) 

where A =  lao12/Im a,. Although (3.3) is tantamount to the completeness relation 

one may also derive (3.4) by expanding 

in terms of the eigenfunctions Ixm) using (3.2), then invoking the orthonormality of 
the eigenfunctions to deduce that 

which simplifies using the inner product relation and (3.2) to produce 

IX) = 2.rrA I*q1,pJ 

c+O,~o, m = (xm I * qo.po) to expand 
thus implying (3.4). A simple inverse to (3.1) exists and is determined by using 

which, using the completeness relation, simplifies to 
m 

Ixm)= ( 2 ~ h ) - '  I_: dqo I_,  PO ~ * Q o , ~ o , m  I*qO,po)* (3.5) 

Other important properties of coherent states concern expressions for the traces of 
operators. If 0 is any operator, then 
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a result verified by expanding the trace in terms of the eigenstates [18]. Using the 
completeness relation (3.4), the trace of 0 itself may be expanded as 

Tr( 0) = (2.rrfi)-' Tr (1:" dqo -m dP0 ~ l * q o . p o ~ ~ * q o . p J )  (3.7) 

and this simplifies using (3.6) to give 

(3.8) 
J - a  J-m 

This result is very useful and allows the high temperature formalism of Reimers ef a1 
[ 191 to be applied to directly calculate thermally averaged properties such as absorption 
spectra. 

4. Generalisation to higher dimensions 

This method applies to a particle confined to any region of an n-dimensional space 
that tessellates [8, 101 the space by reflection. Such a region, when continuously 
reflected about one of its boundary surfaces, covers all of the space evenly, and no 
proper image of the region lies within the region. It is referred to as an image domain 
[7], and closed image domains are examples of Coxeter groups [lo-131. Analytic 
eigenfunctions have been determined by Terras and Swanson [7] for all two- and 
three-dimensional regions that may be treated by this method, and other authors have 
treated some of these problems in detail [ 11, 12, 20-251. Regions of higher dimension 
may also be treated, invoking results from the theory of Coxeter groups to prove that 
the method of images actually fulfils the boundary conditions. Note that this method 
cannot be applied, without approximation, to calculate eigenfunctions for systems for 
which, as yet, only numerical eigenfunctions have been obtained [ 15, 26-31]. 

An example of a closed two-dimensional image domain, a square, is given in figure 
2, along with some nearby images of this domain formed by reflecting the square about 
its sides. The open and closed circles represent a possible set of centres for the Gaussian 
wavepackets as well as their relative phases, while the diagonal lines indicate a possible 
time history: as each wavepacket behaves like a particle in free space, the centres move 
in straight lines. When one of these wavepackets leaves a region, an image wavepacket 
simultaneously enters that region, ensuring that the value of the total wavefunction 
remains zero along the boundary. The new wavepacket appears, to an observer inside 
the box, to be the reflection of the original wavepacket: this result is a consequence 
of the Riemann-Schwarz reflection principle [9,32]. Sketches of all of the two- and 
three-dimensional image domains solvable by this technique have been given by Terras 
and Swanson [6,7]. 

5. The De Leon-Heller spectral quantisation method applied to a ID box 

This technique [ 141, based upon classical trajectories, determines approximate vibra- 
tional eigenstates of polyatomic molecules. It uses the frozen Gaussian approximation 
[33] to propagate the Gaussian wavepackets, and here we apply it to the problem of 
a particle in a one-dimensional box. First, the frozen (fixed width) Gaussians are 
propagated, producing the wavefunction and the overlap (*qo ,po  1 9::p,). The 
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Figure 2. A possible location for the centre of a Gaussian wavepacket and its images for 
a particle in a two-dimensional square box. Bold lines indicate the boundaries of the box, 
and the diagonal arrows indicate a possible set of trajectories for the wavepackets. The 
open and closed circles indicate the relative phase of the wavepackets. 

second and third steps apply (2.9) and (2.10) to determine a set of energy levels, EEG, 
and wavefunctions, IxEG), respectively. In the fourth step, more accurate energy levels 
E FG' ,,, are calculated using 

E"G'= (x"GIH/x"G). (5.1) 

Frozen Gaussians are not solutions of the time-dependent Schrodinger equation 

( 5 . 2 )  

but in one dimension they differ by only a phase factor from the solutions IP;,,,,) of 
another wave equation, namely 

(5.3) 

Any sum of functions f of the form f ( q  * p o t /  M )  is a solution to this equation. Solving 
the equations of motion of a frozen Gaussian [33] shows that its centre moves in 
accordance with Hamilton's equations of motion 

41 = q o * p o t / M  Pr =Po. (5.4) 
The frozen Gaussian constraint is 

so that the 
factor [33] 

where 

( 5 . 5 )  a, = ag Re a. = 0, Im a,> 0 

frozen Gaussian wavepackets /9:,:p,) differ from 
e i ~ , / h  

by only the phase 

lq:p,) = e 'Y~'h/~.b, ,Pr)  (5 .6 )  

, 
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This phase factor displaces the energy levels calculated using (2.9) and these levels 
are given by 

E L G = E h + h  Imao/M-p; / (2M) ( 5 . 8 )  

EL = m.rrhpo/(aM) (5.9) 

where m is an integer and 

are the energies that result when (5.3) is solved exactly. The 'intensities' of these lines 
are given from (2.9) as 

(5.10) 

Note that for m = 0 ,  the intensities arising from the oppositely moving sets of 
wavepackets completely cancel each other, and that the lines on the side of this line 
corresponding to negative values of mp, have negative intensities. 

The eigenfunctions calculated from (2.10) are not affected by the phase factor e'", 
and as a result IxLG) = I,&), the stationary solutions to (5.3). It might seem to be small 
comfort that the frozen Gaussian dynamics satisfies the wrong wave equation; however, 
it is easy to see that both (5.2) and (5.3) share the same eigenfunctions. \Tq,,p,) may 
be expanded, using (2.6) and (3.1), as a sum of products of time-dependent and 
time-independent functions 

(5.11) 

This function is a solution of the time-dependent Schrodinger equation if and only if 

H l X m )  = EmlXm) (5.12) 

thus identifying Ixm) as the eigenfunctions of the Hamiltonian. Similarly, l*L,,pt) may 
be expanded as 

and this function is a solution to (5.3) if and only if 

(5.14) 

Thus 1x2 are also the eigenfunctions of the Hamiltonian so that Ixm) = IxJ, c & ~ ~ , ~  - - 
Cqo,po ,  m 9 and 

Finally, it follows from these relations, (5.7)-(5.9) and (5.13), that 

(5.15) 

(5.16) 

and thus the solutions l * q , , p , ) ,  and [Yi,Gpt) all share the same expansion 
coefficients cqo,po, and eigenfunctions 1 ~ ~ ) .  Their dynamics is different only because 
the eigenvalues differ, causing the eigenfunctions to dephase at different rates. Thus, 
by Fourier transforming, using (2.10), at the frequencies EEG, the exact eigenfunctions 
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of the Schrodinger equation can be extracted from the ‘approximate’ frozen Gaussian 
dynamics. Noting that Ix,) = IxLG), we see that ELG’= E, ,  and the true eigenvalues 
can be extracted using either (5.1) or (5.15). 

The above argument presents a simple physical picture for why the frozen Gaussians 
produce the exact eigenstates for a particle in a one-dimensional box. This picture is 
extended in other papers [3, 341 to provide an a posteriori justification for the use of 
the De Leon-Heller spectral quantisation method to determine the vibrational eigen- 
states of polyatomic molecules. There too, frozen Gaussian dynamics provides a poor 
description of the motion of wavepackets under the Schrodinger equation, but again 
they provide a good approximation to the dynamics of a different differential equation 
which shares its eigenfunctions with the Schrodinger equation. 

Unfortunately, the argument presented in this section cannot easily be generalised 
to describe particles in boxes of more than one dimension. This arises as there is only 
one proportionality constant present in (5 .3)  while each degree of freedom demands 
its own constant in order for the argument to generalise. One can find, however, an 
alternative interpretation of the mathematics that does allow these results to be exten- 
ded. Each wavepacket in the sum ( 2 . 7 )  can be regarded as being a wavepacket 
propagating in free space, and frozen Gaussians are known to produce the exact 
eigenstates for particles in free space: plane waves. Adding all of the plane waves 
travelling in the same direction quantises the solutions, and only those plane waves 
with the correct periodicity remain. These plane waves are in fact the eigenstates of 
a particle on a ring of circumference 2a [3], but for a particle in a box there exists an 
additional set of wavepackets travelling in the opposite direction, and the two sets of 
generated plane waves interfere making the final solutions, (2.14), sine functions. Thus 
we see that the frozen Gaussians produce plane waves, and that the plane waves 
combine to give the eigenstates. This approach may be extended to higher dimensions 
as it is known that, in general, eigenstates may be expressed in terms of sums of plane 
waves [7,  12, 21-23]. 

6. Extension of the De Leon-Heller method to higher dimensions 

The use of frozen Gaussians does not provide, in general, the exact solutions for a 
particle in a box of more than one dimension. While each component of a separable 
multi-dimensional frozen Gaussian wavepacket satisfies (5.3), the product wavepacket 
does not satisfy the multi-dimensional generalisation of (5.3). An example of a 
trajectory that, using frozen Gaussians, does not lead to the correct eigenstates is given 
in figure 2:  this is a periodic trajectory and the motion resembles the 1: 1 Lissajous 
figure [35]. Along the path of motion the desired plane waves are in fact generated, 
but at points not on this trajectory the wavefunction calculated from (2.10) is just a 
sum of Gaussians, not the exact eigenstates. For rectangular boxes, any trajectory for 
which a,pyo/aypxo is a rational number, where a, and ay are the box lengths and pxo 
and pyo are the components of the momenta, will give rise to a periodic trajectory and 
(2.10) will not produce the eigenstates. An example of a trajectory which is not periodic 
is given in figure 3, where we choose, in dimensionless units defined so that h = M = a, = 
1, a,, = 1, p x o =  1 +5”2 and p y o = 2  so that a,pyo/aypx0 is irrational. After an infinite 
amount of time, this trajectory covers all space evenly [35], and every point in position 
space lies on the trajectory. The four distinct directions of travel give rise to four sets 
of plane waves and these interfere to produce the exact eigenstates. 
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Figure 3. The extract 0 s  t L 10.2 taken from the non-periodic trajectory with a, = ay = 1, 
p x  = 1 + 5’’’ and qxo = qyo = 0. This trajectory is not plotted up to t = 75 as the square 
would be completely shaded by this pen. 

Consider the separable, multi-dimensional frozen Gaussian wavepacket defined as 

(6 .1)  

the product 

I + k!. P X ,  ) I + :!* P y  i ) 

of functions of the form of (2 .1) ,  where qx and qy are the position variables whose 
expectation values at time t are 

4x1 qxo+ pxot/M q y r  = q y o  + pyot/ M (6 .2)  

respectively, and qxo and qyo are the initial expectation values of position. Using the 
method of images, a wavefunction with the correct boundary properties can be written 
as 

Under frozen Gaussian dynamics, substitution of this wavefunction into (2.9) gives a 
spectrum which is a convolution of the spectra for the individual x and y components, 

where m = (m, ,  m y )  is a vector of the quantum numbers, and E is the classical energy 
of the trajectory 

E = (2M)-’ (P:o+P;o) .  (6.5) 

The energy spectrum calculated from the trajectory shown in figure 3, extended to 
over seven times its length, is given in figure 4, along with the spectrum obtained using 
thawed Gaussian dynamics from just the portion of the trajectory shown. Note that 
frozen Gaussian spectra are purely real only if the trajectory starts at a box comer, 
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Figure 4. In the top left corner is the power spectrum obtained using thawed Gaussians 
from the trajectory given in figure 3, as well as the power spectrum obtained using frozen 
Gaussians from this trajectory extended to t = 75. The remaining inserts are eigenfunctions 
extracted from the frozen Gaussian dynamics. 

but, if desired, real spectra may always be obtained by applying initial phase corrections. 
Substitution of ( 6 . 3 )  into ( 2 . 1 0 )  produces four terms, each one corresponding to one 
of the possible directions of motion of the wavepackets. Considering one of these 
terms we write 

0 0 “  

(4x9  q y l x f m + )  = c J d t  exp(- i~mt/  h)(qx/J lk: i+*n ,a , ,p , , ) (qy lJ lkYy~+*n,o , ,py , )  
nx=-m n,=--m -m 

where 

q:, = q x o + P x o ~ + 2 a x n x  q:t = q y o +  P y o f  + 2 a y n y .  (6.7) 

If the trajectory is not periodic, then the trajectory covers all space evenly and all 
possible values of qLt and qbt are equally as likely. The double summation and time 
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integral in the above equation thus become a position space integral 

(6.8) 

which evaluates to give 

( q x ,  qyIx+m+)~exp[i~m,(qx -qxo)/a,+i.rrm,(q, -q,d/a,I (6.9) 

and so a plane wave is produced. Combining the four terms from (6.3) and normalising 
results in 

(6.10) 

and the exact eigenstates are obtained. Figure 4 shows some of the eigenstates obtained 
using frozen Gaussians from the extended trajectory shown in figure 3. 

As a result of the sparseness of the rational numbers, the set of all trajectories that 
are periodic has measure zero. Thus, if the components of the momenta are selected 
at random then the probability of selecting a periodic trajectory is zero, and frozen 
Gaussian dynamics will give the correct eigenstates. When used in conjunction with 
the De Leon-Heller spectral quantisation method, the exact eigenvalues are also 
obtained. These arguments apply to a particle in any box for which the method of 
images can be applied. 

Frozen Gaussian dynamics forces the energy spectrum obtained from (2.9) to be 
a convolution of evenly spaced lines, whereas for a particle in a box, the true energy 
spectrum is a convolution of quadratically spaced lines. Here, one would expect that 
only poor results could be obtained using frozen Gaussians, but the exact answer is 
recoverable. This example is somewhat specialised, but it does lend some insight into 
the success of the frozen Gaussian spectral quantisation method [14], and further 
investigation along these lines will be reported elsewhere [3,34]. Frozen Gaussian 
dynamics is simple to use, being closely related to classical dynamics, yet it provides 
the exact solutions for these and other problems [4,36]. It is becoming an important 
analytic [37] and computational [38] tool. 

(q,, qylxm) = 2(a,a,)-”2 sin( rmxq, /  a,) sin( rmyqy/ a y )  

7. Conclusions 

Gaussian wavepacket dynamics is shown to give the exact solutions to a fundamental 
problem of physics: a particle in a box. These results are important as they show that 
Gaussian wavepacket dynamics is capable of giving exact eigenfunctions for systems 
that have neither linearly spaced energy levels nor smooth potentials. Further, most 
of these problems are solvable exactly using the simpler frozen Gaussians and the De 
Leon-Heller spectral quantisation method [14], a method which is no more difficult 
to implement than is classical mechanics. Our analysis in terms of ‘wrong dynamics 
with the right eigenfunctions’ adds insight into the success of the frozen Gaussian 
method for calculating vibrational [ 14, 39, 401 and rotational [41, 421 wavefunctions. 
For the present case of bounded enclosures, the wavefunctions used are coherent states 
appropriate to the problem. 
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